20
03 18 Motives for computing π
"As mathematicians discovered new algorithms, and computers became available, the number of known decimal digits of π increased dramatically. The vertical scale is logarithmic.
For most numerical calculations involving π, a handful of digits provide sufficient precision. According to Jörg Arndt and Christoph Haenel, thirty-nine digits are sufficient to perform most cosmological calculations, because that is the accuracy necessary to calculate the circumference of the observable universe with a precision of one atom. Accounting for additional digits needed to compensate for computational round-off errors, Arndt concludes that a few hundred digits would suffice for any scientific application. Despite this, people have worked strenuously to compute π to thousands and millions of digits. This effort may be partly ascribed to the human compulsion to break records, and such achievements with π often make headlines around the world. They also have practical benefits, such as testing supercomputers, testing numerical analysis algorithms (including high-precision multiplication algorithms); and within pure mathematics itself, providing data for evaluating the randomness of the digits of π." https://en.wikipedia.org/wiki/Pi
|